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Abstract Non-line-of-sight (NLOS) global navigation satellite system (GNSS) signals 8 

are a major factor that limits the GNSS positioning accuracy in urban areas. An 9 

advanced GNSS signal processing technique, the vector tracking loop (VTL), has been 10 

applied to NLOS detection and correction, and its feasibility and superior performance 11 

have been reported in recent studies. In a VTL-based GNSS receiver, the navigation 12 

(i.e., position, velocity and time (PVT)) solutions are used to predict the signal tracking 13 

loop parameters. The difference between the predicted signal and the received signal 14 

within the code discriminator output can be used to detect NLOS reception. We generate 15 

the probability of NLOS detection by modelling the code discriminator outputs using 16 

Gaussian fitting. If this probability is larger than a predefined threshold, NLOS 17 

reception is deemed to occur. Then, the NLOS-induced pseudorange measurement bias 18 

is estimated as a state variable in the state vector; i.e., an augmented state vector is 19 

created for the extended Kalman filter. Two GPS L1 C/A signal datasets from a static 20 

test and a dynamic test are investigated using the proposed algorithm. The experimental 21 

results indicate that when NLOS reception is present, the proposed approach 22 

outperforms the other two methods, i.e., the standard VTL method without considering 23 

NLOS reception and the VTL-based NLOS detection and correction method with 24 

multicorrelators, in terms of the positioning performance. In addition, the proposed 25 

approach has a lower computational load than the VTL method with multicorrelators. 26 
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Introduction 32 

Urban areas characterized by tall buildings and narrow streets are challenging for global 33 

navigation satellite system (GNSS) positioning. To deliver user position, velocity and 34 

time (PVT) information, one synchronizes GNSS signals to local signal replicas within 35 

the receiver to generate measurements such as pseudorange measurements, carrier 36 

Doppler frequencies, and the carrier-to-noise power ratio 0C N . Under an open-sky 37 

environment, the received signals almost all directly reach the receiver antenna (Kaplan 38 

and Hegarty 2005; Tsui 2005). As such, accurate synchronization is achievable, and 39 

therefore, accurate navigation solutions can be obtained. However, in dense urban areas, 40 

the signals are easily reflected or blocked by tall buildings, leading to multipath (MP) 41 

interference and non-line-of-sight (NLOS) reception. MP signals refer to compound 42 

signals with both direct and reflected signals or multiple reflected signals with no direct 43 

signals, whereas an NLOS signal contains only the time-delayed version of the direct 44 

signal (Hsu 2018). MP interference and NLOS signals can degrade the measurement 45 

quality and cause large positioning errors. In particular, the NLOS-induced 46 

pseudorange measurement error could reach tens of metres. As such, in this work, we 47 

focus on the issue of NLOS signals, although the proposed algorithm could be extended 48 

to MP-induced error detection and correction. 49 

Researchers have proposed various methods of dealing with NLOS signals to 50 

improve the accuracy of standalone GNSS receivers (Breßler et al. 2016). These 51 

techniques and algorithms can be broadly divided into two categories: detection and 52 

correction. Detection algorithms are the premise for mitigating or correcting NLOS 53 

signals. In general, an NLOS signal has a lower 0C N  than a direct line-of-sight (LOS) 54 

signal, and thus, this power ratio can be used as a detection metric. Apart from 0C N , 55 



other features of NLOS signals are also explored in the literature using machine 56 

learning techniques at both the Receiver Independent Exchange Format (RINEX) level 57 

and the baseband signal processing level (Xu et al. 2019b; Yozevitch et al. 2016). In 58 

addition, external assistance, such as 3D building models (Wang et al. 2015; Hsu et al. 59 

2015a) and a sky-pointing camera, can also be employed for detecting NLOS reception 60 

(Meguro et al. 2009; Marais et al. 2014). 61 

In dense urban areas, in-view satellites usually have a poor geometric distribution 62 

due to blockage. As such, an ideal method is to constructively use NLOS signals instead 63 

of excluding them to avoid degrading the satellite geometry. The NLOS signal time 64 

delay can be estimated with additional assistance, e.g., a 3D building model, with which 65 

the signal propagation route can be traced using the ray tracing technique, and therefore, 66 

the additional time delay can be obtained. However, the ray tracing method may take 67 

approximately half a minute to one minute to propagate the transmission paths for all 68 

satellites to all surfaces inside the 3D model; the required computation time depends on 69 

the complexity of the 3D building model (Ng et al. 2020). To avoid requiring assistance 70 

from external sensors, such as inertial measurement units, cameras, 2D/3D mapping, or 71 

other forms, the advanced GNSS signal processing technique known as the vector 72 

tracking loop (VTL) has been proposed to detect and correct NLOS reception in recent 73 

years (Hsu et al. 2015b; Xu et al. 2020). 74 

The concept of the VTL dates back to the early 1980s (Copps et al. 1980). In the 75 

VTL technique, signal tracking and navigation processing are considered a single 76 

integrated function, not separate functions. Spilker (1996) described the structure of the 77 

vector delay lock loop (VDLL), which laid the foundation for wide applications of VTL. 78 

The most cited benefit of the VTL over conventional scalar tracking loops (STLs) is its 79 

robustness in challenging environments, e.g., weak signals and high dynamics (Lashley 80 

et al. 2009; Zhao et al. 2011), signal outages (Jiang et al. 2019), and interference 81 

(Benson 2007). In terms of dealing with the NLOS issue, VTL has also been explored 82 

in the existing literature. In Hsu et al. (2015b), NLOS detection was accomplished using 83 

VTL. The rationale behind this approach is that the VTL closes the tracking loop using 84 



the navigation solutions. In this way, the NLOS signal is not locked onto given an 85 

accurate navigation solution using other healthy satellites and a receiver dynamics 86 

model. Therefore, a phase difference between the incoming NLOS signal and the local 87 

replica code is created and remains during the NLOS reception period, which provides 88 

an opportunity for detecting NLOS reception. Recently, Xu et al. (2020) developed a 89 

robust and comprehensive algorithm based on an open-source VTL software-defined 90 

receiver (SDR) (Xu and Hsu 2019a) that can not only detect NLOS reception but also 91 

correct NLOS-induced pseudorange measurement errors. However, this algorithm 92 

detects NLOS signals using the time delays of multicorrelator peaks and therefore 93 

suffers from a high computational load. To address this issue, Xu et al developed a two-94 

step algorithm. In the first step, a potential NLOS subset is determined by a metric, the 95 

noise bandwidth, based on the fact that the VTL adaptively gives a lower noise 96 

bandwidth to contaminated signals, including received NLOS signals. In the second 97 

step, multicorrelators are activated in channels for potential NLOS reception to claim 98 

and extract the NLOS code delay. However, the noise bandwidth is related to 99 

specifications on the front end, such as the filter bandwidth and the noise level. In 100 

addition, a premise of this method is that four or more healthy satellites exist; otherwise, 101 

the accuracy of the navigation solution will degrade, and thus, the algorithm can no 102 

longer provide accurate loop parameters, as demonstrated in Fig. 26 in Xu et al. (2020). 103 

Therefore, it is difficult for this algorithm to cope with more complicated environments, 104 

e.g., a large portion of contaminated measurements. Therefore, there is still much room 105 

for improving the VTL-based NLOS detection and correction approach. For instance, 106 

how does one effectively detect and correct NLOS reception without using 107 

multicorrelators? Another question is how to enhance the robustness against 108 

complicated environments. 109 

In the VTL framework, an extended Kalman filter (EKF) is usually employed for 110 

estimating the user position and clock bias based on the VDLL discriminator outputs. 111 

Under the LOS condition, the error of the VDLL discriminator outputs is assumed to 112 

be subject to a zero-mean Gaussian distribution. However, when NLOS signals are 113 



received, the statistics of the VDLL discriminator outputs will change. To cope with 114 

this problem, we augment the standard state vector, which consists of user position and 115 

velocity errors and user clock bias and drift errors, with an extra term, i.e., the NLOS-116 

induced code delay. Consequently, an EKF with an augmented state is designed to 117 

estimate the NLOS-induced pseudorange measurement error along with the navigation 118 

solutions. In fact, the probability of NLOS occurrence can also be inferred from the 119 

statistics of code discriminator outputs. As such, NLOS occurrence can be detected with 120 

the constructed statistical model. In summary, we propose an approach to detect and 121 

correct GNSS NLOS-induced errors by augmenting the state vector with NLOS-122 

induced biases for estimation with an EKF. Compared with the existing literature, our 123 

contributions are summarized as follows: 124 

(1) A Gaussian fitting (GF) method is proposed to model the VDLL discriminator 125 

outputs, and the probability of NLOS detection can be generated. Once the NLOS 126 

occurrence detection probability is larger than the predefined threshold, the NLOS 127 

signal is deemed present. Detection and false alarm curves are also presented for 128 

analysing the proposed detection method. 129 

(2) In the existing method (Xu et al. 2020), the NLOS bias is estimated using the 130 

average values of multicorrelator outputs, and the measurements are compensated with 131 

the average values of the code discriminator outputs before being included in the 132 

navigation solution determination process. We add the NLOS-induced bias to the state 133 

vector for estimation in the EKF. In this way, a more accurate NLOS bias can be 134 

estimated, leading to an improved PVT solution. 135 

The following section describes the methodology, including the designed VTL 136 

navigation filters under LOS and NLOS conditions and the NLOS probabilistic 137 

detection algorithm. This is followed by the experimental section, in which we test two 138 

GPS L1 C/A signal datasets. Detailed results and an in-depth analysis are presented. 139 

Finally, we conclude the paper and provide suggestions for future work. 140 

 141 



Methodology 142 

In this section, we introduce the proposed methodology. Fig. 1 illustrates a system-143 

level block diagram of the proposed method. The probability of NLOS detection at each 144 

channel is calculated based on the VDLL discriminator outputs. If the NLOS detection 145 

probability is larger than a threshold, the corresponding NLOS bias will be added to the 146 

state vector to be estimated. If NLOS signals are not present, the commonly used state 147 

vector will be used in the EKF. 148 

 149 

   Fig. 1 System-level block diagram of the proposed method.  150 

 151 

VTL Navigation Filter under LOS Condition 152 

In the standard VTL navigation filter model, the error state vector, x , is usually 153 

defined as (Zhao et al. 2011): 154 

 T[ , , , ]b dt t    =x p v  (1) 155 

where p  and  v  are error vectors of the user position and velocity, respectively, in 156 

Earth centred Earth fixed (ECEF) coordinates, bt   is the user clock bias error in 157 

metres, and dt  is the user clock drift error in units of metres per second. The system 158 

propagation equation is 159 

 LOS

1k k k + +x = Φ x w  (2) 160 

where 1k+w  is the process noise vector with an assumed zero mean and normal 161 



distribution, i.e., ( )0,k kw Q～   with covariance matrix kQ  , and 
LOS

Φ  is the state 162 

transition matrix, which is assumed to be 163 
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with 0T being the update interval. The superscript “LOS” denotes the LOS condition. 165 

In the VTL, carrier tracking is accomplished via a vector frequency lock loop 166 

(VFLL). The user velocity error vector at 1k +  , T

1k +v  , can be inferred from the 167 

pseudorange rate error measurements ca

1k +z  using 168 

  
Tca ca T ca
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p p p p   is 170 

the unit vector pointing from the receiver to the m-th satellite, and ( )m
p  and up  are 171 

the position vectors of the m-th satellite and receiver, respectively. 
, 1d kt +

represents 172 

the receiver clock drift error. ca

kε  denotes the measurement noise vector for the 173 

pseudorange rate error measurement. The code discriminator outputs are employed as 174 

the pseudorange error measurements, 
c

1k +z , which are related to the state variable as 175 

  
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where 
c ca

1 1=k k+ +H H
 

and 
c

1k+ε is the measurement noise vector for the pseudorange error 177 

measurement. 178 

Equations (1) to (5) illustrate the relationship between the state variables and the 179 

measurement variables. The Kalman filter works as a two-step process. In the first step, 180 



i.e., prediction, the filter predicts the state at the next epoch along with its uncertainty 181 

1k+P , which is referred to as the state estimation error covariance matrix, using 182 

 LOS

1k k −

+ = x Φ x  (6) 183 

 ( )
T

LOS LOS

1k k k

−

+ = +P Φ P Φ Q  (7) 184 

where ‘-’ denotes a prediction and ( )T

k k kE=Q w w , with ( )E  being the expectation 185 

operator. 186 

In the second step, the state is updated in a weighted average manner based on the 187 

uncertainties in the system propagation and the measurements 188 
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 , 192 

1k+K
 is the Kalman gain matrix, I  is an identity matrix with the same dimensions as 193 

1k+P  , and 1k+R
  

is the measurement noise covariance matrix that is calculated by 194 

( )T

k k kE=R ε ε . The VTL navigation filter works in a recursive manner as described by 195 

(6) to (10) under the LOS condition. When NLOS reception is present, the NLOS-196 

induced pseudorange error is added to the state described in (1), forming an augmented 197 

state, which is described in the following subsection. 198 

 199 

VTL Navigation Filter under the NLOS Condition 200 

As stated previously, the additional time delay of the NLOS signal will distort the VTL 201 

navigation filter measurements, leading to erroneous navigation solutions. Therefore, 202 



before updating the navigation filter, the NLOS signal should be detected from the 203 

received signals. Upon detection, instead of excluding the NLOS signal measurements, 204 

we propose to correct the NLOS-induced measurement error to constructively use it 205 

without degrading the satellite geometry. 206 

In the existing VTL-based NLOS detection and correction method (Xu et al. 2020), 207 

the occurrence of the NLOS signal is determined based on the multicorrelator output, 208 

from which the NLOS delay can also be extracted. However, the corresponding 209 

computations require a large amount of computational resources, and the resolution is 210 

limited by the number of correlators used. In this research, we detect NLOS reception 211 

and correct the NLOS-induced measurement error without using multicorrelators. The 212 

rationale behind this approach is that the code discriminator outputs are subject to a 213 

zero-mean Gaussian distribution under pure LOS conditions and a non-zero-mean 214 

Gaussian distribution under the NLOS condition. Note that, to obtain accurate Gaussian 215 

model parameters, this approach should be applied when the tracking loop reaches its 216 

steady state. When the NLOS signal is present, the measurement model of (5) is 217 

modified to 218 

 
c c T NLOS c

1 1 1 , 1 1+ +k k k b k kt  + + + + +=   +z H p b ε  (11) 219 

where 
NLOS

b  is the NLOS-induced pseudorange measurement error in units of metres. 220 

The superscript “NLOS” denotes the variables under the NLOS condition. By adding 221 

NLOS
b  to (1), an augmented state is formed as 222 

 
NLOS NLOS T[ , , , , ]b dt t    =x p v b  (12) 223 

Note that the dimension of 
NLOS

b equals the number of satellites that are identified as 224 

providing NLOS signals. With the introduction of 
NLOS

b , the Kalman filter models are 225 

rewritten as  226 
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Considering that LOS and NLOS signals can be present at the same time, (13) and (14) 229 

are reformulated as 230 
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 and 1MC  is a matrix with entries of 1 and 233 

0 for NLOS and LOS signals, respectively. As a result, the prediction and updating 234 

processes of the Kalman filter can be summarized as 235 
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where ( )( )T
NLOS NLOS NLOS=k k kEQ w w  , ( )( )T

NLOS NLOS NLOS

k k iE=R ε ε  , and 0B   is the state 241 

estimation error covariance matrix associated with 
NLOS

b . Compared with (6) through 242 

(10), which describe the VTL navigation filter under the LOS condition, the navigation 243 

filter under the NLOS condition, i.e., (17) to (21), can estimate the NLOS-induced 244 

pseudorange measurement error in addition to the PVT solution. 245 



 246 

NLOS Detection 247 

In the existing VTL-based NLOS detection method, NLOS detection is accomplished 248 

based on multicorrelator outputs. The bias of the correlator peak,  , is assumed to 249 

be the additional code delay of the NLOS reception. If   exceeds a predetermined 250 

threshold, NLOS reception is deemed present. Here, we use a Gaussian model to fit the 251 

code discriminator outputs and generate the probability of LOS/NLOS occurrence. 252 

Additionally, with the given parameters, the false detection probability and false alarm 253 

probability of NLOS reception can be generated. 254 

The VDLL discriminator outputs are assumed to be subject to a Gaussian 255 

distribution. As such, the i-th epoch code discriminator output iCE  can be modelled 256 

as 257 

 ( )2,
i ii CE CECE u ～  (22) 258 

where ( )  denotes the normal distribution, 
iCEu   and 

2

iCE   are the expectation and 259 

variance, respectively, of the i-th epoch code discriminator output. Under the LOS 260 

condition, 0
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number of code discriminator outputs being calculated, are still subject to a Gaussian 262 

distribution and thus is modelled using 263 
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(23) 264 

under the assumption that iCE   is independently distributed. Assuming that 0H265 

represents LOS occurrence and 1H  represents NLOS occurrence, the NLOS detection 266 

probability dP  is 267 
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(24) 268 

where   is the NLOS detection threshold and ( )P   is the cumulative distribution 269 

function. In fact, _ iAvg CE   is not necessarily subject to a normal Gaussian 270 

distribution. To calculate the detection probability, we transform the Gaussian 271 

distribution in a normalized Gaussian distribution as follows 272 
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(26) 274 

where the detection probability is established as a function of _ iAvg CE , the detection 275 

threshold and the statistical parameters in the Gaussian distribution framework. The 276 

NLOS probability corresponding to each _ iAvg CE   can be calculated with this 277 

established model. Under the LOS condition, the distribution of _ iAvg CE  is described 278 

as 279 
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where _ iAvg CE  is assumed to be subject to a zero-mean Gaussian distribution. In this 281 

context, a false alarm refers to the case when an NLOS signal is detected but is in fact 282 



an LOS signal. The false alarm probability  is 283 

 ( ) ( )0 0_ | =1- _ |fa i iP P Avg CE H P Avg CE H =    (28) 284 

where 
faP   is calculated based on the LOS occurrence probability, 285 

( )0_ |iP Avg CE H . Similar to (24) to (26), the transformation of the distribution of 286 

_ iAvg CE  to a normalized Gaussian distribution and the calculation of the false alarm 287 

probability is given by 288 
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           (30) 291 

As seen in (30), the false alarm probability is also related to the detection threshold292 

  . In fact, a smaller false alarm probability is always preferred in detection. The 293 

relationship between the NLOS detection probability and the false alarm probability 294 

can be established through the shared detection threshold. 295 

According to (30), the NLOS detection threshold  can be written as 296 
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 (31) 297 

where  is the inverse distribution function of the standard Gaussian distribution. 298 

Combining (26) and (31), the relationship between detection probability dP  and false 299 

faP



( )1P− 



alarm probability faP  is written as 300 
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 (32) 301 

where the NLOS detection probability dP  is modelled as a function of the false alarm 302 

probability 
faP  and the statistical parameters 

kCEu  and 
kCE . Letting =

kCEu 
 
and 303 

kCE = , equation (32) can be simplified to 304 
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(33) 305 

where =





 . As can be seen, the parameters    and CEN
  affect the relationship 306 

between the NLOS detection probability dP   and the false alarm probability 
faP  . 307 

CEN  can be either selected as a rule-of-thumb value or determined by analysing the 308 

relationship between dP   and 
faP   in (33). While implementing the method, the 309 

parameters CEN
,
 

kCEu
 
and 

kCE
 
are usually set through an experimental analysis of 310 

the code discriminator outputs. 311 

 312 

Experiments 313 

In this section, both static and dynamic field tests are carried out to evaluate the 314 

performance of the proposed algorithm using GPS L1 C/A signals. We present detailed 315 

results such as the LOS/NLOS detection probability, the relationship between the false 316 

alarm probability and detection probability, and the positioning performance. 317 



 318 

Static Field Test 319 

A static field test was conducted at an irregular crossroad in the Tsim Sha Tsui East 320 

area, Hong Kong, as shown in Fig. 2, together with a sky plot of the building boundary 321 

information during the test period. Table 1 lists the parameter settings of the data 322 

collection equipment. As shown in Fig. 2, seven satellites are tracked, among which 323 

pseudorandom noise (PRN) 3 and 22 are NLOS satellites. Fig. 3 shows the signal 324 

strength of the satellites. PRNs 3 and 22 have lower powers than the other satellites due 325 

to reflection-induced attenuation. 326 

Table 1 Parameter settings of the data collection equipment 327 

Equipment Parameter Value Unit 

Antenna Model AGR6303 - 

Low noise amplifier gain 27 dB 

Noise figure ≤ 2 dB 

 Polarization Right-hand 

circularly polarized 

- 

Front-end Model NSL Stereo - 

GNSS signal GPS L1 C/A - 

Sampling frequency 26 MHz 

Intermediate frequency 0 MHz 

Double-sided bandwidth 8 MHz 

Noise figure 8 dB 

Gain 10 dB 

 328 



 329 

Fig. 2 Static experimental point in Google Earth (top) and a sky plot with building 330 

boundary information (bottom, Green: LOS, Red: NLOS; numbers indicate the PRN 331 

index) 332 

 333 

  334 

Fig. 3 Signal 0C N of the satellites tracked 335 



We model the VDLL discriminator outputs using GF (Chen et al. 2018) and extract 336 

the statistical parameters for calculating the NLOS occurrence detection probability and 337 

the corresponding false alarm probability. Figs. 4 and 5 present the GF results of the 338 

VDLL discriminator outputs for LOS satellites (PRNs 14, 16, 23, 27, and 31) and NLOS 339 

satellites (PRNs 3 and 22), respectively. The GF results are obtained using the first 40 340 

seconds of data. The coherent integration time is set to 1 millisecond (ms), and 40000 341 

code discriminator outputs are used here. It is observed that the LOS and NLOS signals 342 

are distinguishable in terms of the mean value of the GF-fitted VDLL discriminator 343 

outputs, and this characteristic is helpful for detecting NLOS occurrence. For this 344 

dataset, the mean value of the discriminator outputs for the LOS signals approaches 345 

zero, whereas the mean value has a larger offset (≤ -0.2 chip) for the NLOS signals. 346 

Note that the mean value of the code discriminator outputs can be either positive or 347 

negative for LOS and MP signals, whereas the mean value is negative for NLOS 348 

satellites. The reason is that an NLOS signal travels along an additional path and 349 

therefore aligns better with the late correlator than the early correlator in the VTL 350 

architecture. As a result, for an early minus late discriminator function, its output is 351 

negative. However, for MP signals, the code discriminator output can be either 352 

positively or negatively dependent on the carrier phase difference between the direct 353 

signal and the reflected signal (Xu et al. 2019b). 354 



  355 

Fig. 4 GF results of the VDLL outputs for PRNs 14, 16, 23, 27, and 31. In general, the 356 

mean value of the code discriminator outputs in the VDLL approach are zero for LOS 357 

satellites 358 

 359 



  360 

Fig. 5 GF results of the VDLL outputs for PRNs 3 and 22, which are NLOS satellites. 361 

Compared to the LOS satellites, the NLOS satellites have a larger code discriminator 362 

output offset in the VTL framework  363 

 364 

As presented in (32), the detection threshold  and the number of code 365 

discriminator outputs being calculated CEN
  affect the false alarm and detection 366 

probabilities. Once the model is fixed, the value of    is determined. Receiver 367 

operating characteristic (ROC) curves are usually used to present the relationship 368 

between the detection probability and false alarm probability (Radin et al. 2015). Fig. 369 

6 presents the ROC curves for different values of   and CEN . The parameter   is set 370 

to 1/4 to explore the influence of CEN  on the detection probability. For the same false 371 

alarm rate, the larger the value of CEN  is, the higher the detection probability. Then, 372 

to assess the influence of   on the detection probability, CEN   is set to 200. 373 

According to the curves presented in the bottom panel in Fig. 6, a larger   contributes 374 

to a better detection performance. 375 

 376 





 377 

    Fig. 6 Receiver operating characteristic (ROC) curves for different values of 378 

CEN  with fixed 1 4 =  (top) and for different values of 
 with fixed 200CEN =  379 

(bottom) 380 

 381 

With the above analysis, here, the window sizes CEN  and   are set to 500 and 382 

0.1 chips, respectively. The probability threshold of NLOS detection is set to 50%, 383 

which approximately equals 0.1 chips. Fig. 7 presents the LOS probability of detection 384 

(top panel) and the average VDLL discriminator output values over 500 ms (bottom 385 

panel) for PRNs 16, 31, 14, 27, and 23. Among these satellites, PRN 14 has the lowest 386 

LOS probability of detection. The LOS probability of the detection results is consistent 387 

with the corresponding average values. For instance, PRN 14 has the largest offset of 388 

code discriminator outputs, indicating the lowest detection probability. Fig 8 presents 389 

the NLOS detection probability and average values of the code discriminator outputs 390 



over 500 ms for PRNs 3 and 22. Both satellites have a probability of NLOS occurrence 391 

exceeding 60% during most of the experiment. Compared with conventional binary 392 

NLOS detection, the proposed approach can provide a probability of NLOS occurrence. 393 

In addition, the magnitude of this probability indicates the magnitude of the additional 394 

code delay of the NLOS signal. In other words, the NLOS probability is highly 395 

correlated with the additional NLOS code delay. For instance, in this experiment, PRN 396 

22 has a larger additional code delay than PRN 3 in the first 30 seconds. 397 

 398 

 Fig. 7 LOS detection probability (top) and average values of VDLL discriminator 399 

output over 500 ms (bottom) for PRNs 16, 31, 14, 27, and 23 400 

 401 

 402 



 403 

 Fig. 8 Average values of the VDLL discriminator output (top) and NLOS detection 404 

probability (bottom) for PRNs 3 and 22 405 

 406 

Fig. 9 presents the horizontal errors. The Standard VTL line indicates the result of 407 

the standard VTL method without considering NLOS reception. The line labelled "VTL 408 

with multicorrelator" represents the method of VTL-based NLOS detection and 409 

correction with multicorrelators proposed in Xu et al. (2020). In the VTL method with 410 

multicorrelators, the mean value of multiple correlator peaks is considered to be the 411 

additional code delay of the NLOS signal, which is then compensated for the 412 

pseudorange error measurements before feeding the measurements to the Kalman filter. 413 

The line labelled "VTL with an augmented state vector" signifies the result of the 414 

proposed approach. The statistical results of the positioning errors are listed in Table 2. 415 

Overall, the proposed approach slightly outperforms the other two methods in terms of 416 

both the mean and STD metrics. A closer look at Figs. 8 and 9 shows that when the 417 



NLOS probability is higher, such as at periods of 0 to 8 s and 22 to 28 s, the 418 

improvement in the positioning performance is larger than that in other periods, 419 

indicating the effectiveness of the proposed approach. However, during the period of 420 

approximately 14 to 24 s, the proposed method has a larger positioning error than the 421 

VTL method with multicorrelators. Note that the NLOS probabilities of detection for 422 

both PRN 3 and PRN 22 are lower than 60% during this period, as shown in Fig. 8. A 423 

possible explanation is that the low probability of detection may degrade the 424 

performance of the proposed method. 425 

 426 

Fig. 9 Horizontal positioning errors using different algorithms 427 

 428 

Table 2 Statistical results (mean and standard deviation (STD)) of the horizontal 429 

positioning errors for different algorithms (metres) 430 

Algorithms Standard VTL VTL with 

multicorrelators 

VTL with augmented 

state vector 

Mean 32.6 10.6 9.8 

STD 8.1 7.2 6.3 

 431 

Dynamic Field Test 432 

We also assess the proposed method using a dynamic IF dataset, which is the same as 433 

that used in our previous work (Xu et al. 2020). The route and street view are presented 434 



in Fig. 10. The antenna was carried by a pedestrian walking from Point 1 to Point 2; a 435 

more detailed description of the trajectory and the acquisition of the IF dataset can be 436 

found in Xu et al. (2020). The velocity in the east direction obtained using the VTL 437 

method with multicorrelators in Xu et al. (2020) is presented in Fig. 11, which is divided 438 

into four stages. 1) The pedestrian remained static at Point 1. The geometric distribution 439 

of the satellites in this period is presented in the middle panel of Fig. 10 (bottom left). 440 

All satellites tracked, i.e., PRNs 14, 22, 26, 31, and 32, are under the LOS condition 441 

without considering potential MP interference. 2) The pedestrian walked towards Point 442 

2 (eastward) with a velocity of approximately 1 m/s. 3) The pedestrian stopped at Point 443 

2 for a few seconds. The distribution of satellites at this stage is shown in the right panel 444 

of Fig. 10 (bottom right). We can see that PRN 31 is an NLOS satellite because its 445 

elevation angle is more than 15° lower than the building boundary at the same azimuth 446 

angle. According to the sky plot, PRN 22 is more likely to be diffracted, if not an NLOS 447 

satellite, because it is at the edge of the building boundary. 4) The pedestrian walked 448 

from Point 2 back to Point 1 along the same route. 449 

  450 

Fig. 10 Dynamic test trajectory (top) and sky plots at Points 1 (bottom left) and 2 451 



(bottom right). The sky plot at Point 1 also gives the satellites (grey dots) that are 452 

present but cannot be tracked using the software receiver. 453 

 454 

 455 

     Fig. 11 Velocity in the east direction during the dynamic test, based on which 456 

the test period is divided into four stages for assessment 457 

 458 

Fig. 12 GF results of the VDLL discriminator outputs for PRN 31 at Point 1 459 

 460 



 461 

 Fig. 13 NLOS probability for PRN 31. At stage 3, the NLOS detection probability 462 

exceeds 80% most of the time 463 

 464 

In the first stage, PRN 31 is under the LOS condition, and the GF results for the 465 

VDLL discriminator output are presented in Fig. 12. Then, this model is employed to 466 

calculate the NLOS probability of PRN 31 at the following stages. The horizontal 467 

positioning errors for the three methods, i.e., the standard VTL method, the VTL 468 

method with multicorrelators, and the proposed method, are presented in Fig. 14, and 469 

the statistical analysis results are listed in Table 3. The ground truth trajectory was 470 

obtained based on the labelled features corresponding to the Google Earth with a 471 

timestamps record. At Point 2, the proposed VTL method with an augmented state 472 

vector outperforms the other two methods. Note that at this stage, the NLOS probability 473 

of PRN 31 exceeds 80%, as shown in Fig. 13. However, when the pedestrian was 474 

walking from 36 to 68 s, the VTL method with multicorrelators outperforms the 475 

proposed method, which may indicate that motion has an effect on NLOS detection. 476 

One of the reasons is that the proposed method is sensitive to the MP effect, as it detects 477 

NLOS signals based on code discriminator outputs. Therefore, MP errors caused by 478 

either user motion or satellite motion may produce a large code tracking error, which 479 

increases the false alarm probability of NLOS detection. 480 

Table 4 lists the computational load analysis and comparison of the VTL method 481 



with multicorrelators with the VTL method with an augmented state vector. The 482 

software runs in MATLAB (Version 2018), and the computer is an ALIENWARE M15 483 

laptop with an Intel Core I7 9750H CPU and 16 GB RAM. The code phase search range 484 

is -0.5 to 0.5 chips, and five satellites are processed. With the dataset of 104 seconds, 485 

there are 126 5 104 1000     correlators calculated in the VTL method with 486 

multicorrelators, while only 6 5 104 1000     correlators are calculated in the VTL 487 

method with an augmented state vector. As seen from Table 4, the running time for the 488 

correlation in the VTL method with multicorrelators is approximately 21 times that of 489 

the proposed method. Compared with the increased running time due to 490 

multicorrelators, the increased running time due to the addition of NLOS-induced 491 

pseudorange measurement errors to the standard state vector is much lower. 492 

 493 

Fig. 14 Horizontal positioning errors for different algorithms in the dynamic test.  494 

Table 3 Statistic values of the horizontal positioning errors (metres) 495 

Time (s) 0-36 36-68 68-72 72-104 

Metrics STD Mean STD Mean STD Mean STD Mean 

Standard 7.40 14.52 16.5 22.79 45.19 82.58 12.03 24.17 



VTL 

VTL with 

multicorrelat

ors 

3.65 6.43 4.96 8.39 9.00 13.64 6.36 8.47 

VTL with an 

augmented 

state vector 

3.70 6.72 6.49 10.49 3.63 6.25 5.44 10.67 

 496 

Table 4 Computational load and running time comparison 497 

 Number of 

Correlators 

 

Correlato

r 

Running 

Time (s) 

State 

Vector 

Dimensio

n 

Measuremen

t Vector 

Dimension 

EKF 

Runnin

g Time 

(s) 

VTL with 

multicorrelator

s 

126 5 104000   3110.15 1 8  10 1  7.07 

VTL with an 

augmented 

state vector 

6 5 104000   147.91 1 10  10 1  7.59 

 498 

Conclusions 499 

We proposed a probabilistic approach to detect GNSS NLOS reception and correct its 500 

bias by augmenting the commonly used state vector. Two real-world datasets were 501 

tested, including both static and dynamic cases. The results demonstrate the feasibility 502 

of the proposed approach. Some concluding remarks can be made. On the one hand, 503 

the proposed approach generates the probability of NLOS detection. The higher the 504 

detection probability is, the greater the improvement in the positioning performance 505 

compared to other approaches. On the other hand, although an augmented state vector 506 

is introduced, the proposed method has a much lower computational load than the 507 



method that uses multicorrelators. 508 

The following two directions are suggested for future work. 509 

(1) The proposed approach can be extended to the application of MP detection and 510 

mitigation in the VTL framework. The principle behind this is that both MP- and 511 

NLOS-induced errors manifest themselves in the code discriminator outputs in the VTL 512 

(Hsu et al. 2015b). 513 

(2) LiDAR is an active sensing technique for collecting ranging information of the 514 

surrounding environment, and the motion can be estimated through the collected point 515 

cloud (Hening et al. 2017). LiDAR can provide short-term accurate motion estimation 516 

to aid VTL, which would be beneficial for NLOS detection and correction. 517 

 518 
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